Reading and Writing Data

A short description of the post.

  1. Load the R packages we will use.
  1. Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file to ‘file_csv’. The data should be in the same directory as this file

Read the data into R and assign it to 'emissions'
file_csv <- here("_posts", "2021-02-26-reading-and-writing-data", "co-emissions-per-capita.csv")

emissions <- read_csv(file_csv)
  1. Show the first 10 rows (observations of) ‘emissions’
emissions
# A tibble: 22,383 x 4
   Entity      Code   Year `Per capita CO2 emissions`
   <chr>       <chr> <dbl>                      <dbl>
 1 Afghanistan AFG    1949                    0.00191
 2 Afghanistan AFG    1950                    0.0109 
 3 Afghanistan AFG    1951                    0.0117 
 4 Afghanistan AFG    1952                    0.0115 
 5 Afghanistan AFG    1953                    0.0132 
 6 Afghanistan AFG    1954                    0.0130 
 7 Afghanistan AFG    1955                    0.0186 
 8 Afghanistan AFG    1956                    0.0218 
 9 Afghanistan AFG    1957                    0.0343 
10 Afghanistan AFG    1958                    0.0380 
# ... with 22,373 more rows
  1. Start with the ‘emissions’ data THEN - use ‘clean_names’ from the janitor package to make the names easier to work with - assign the output to ‘tidy_emissions’ - show the first 10 rows of ‘tidy_emissions’
tidy_emissions  <- emissions %>% 
  clean_names()
    
tidy_emissions
# A tibble: 22,383 x 4
   entity      code   year per_capita_co2_emissions
   <chr>       <chr> <dbl>                    <dbl>
 1 Afghanistan AFG    1949                  0.00191
 2 Afghanistan AFG    1950                  0.0109 
 3 Afghanistan AFG    1951                  0.0117 
 4 Afghanistan AFG    1952                  0.0115 
 5 Afghanistan AFG    1953                  0.0132 
 6 Afghanistan AFG    1954                  0.0130 
 7 Afghanistan AFG    1955                  0.0186 
 8 Afghanistan AFG    1956                  0.0218 
 9 Afghanistan AFG    1957                  0.0343 
10 Afghanistan AFG    1958                  0.0380 
# ... with 22,373 more rows
  1. Start with the ‘tidy_emissions’ THEN - use ‘filter’ to extract rows with ‘year == 2019’ THEN - use ‘skim’ to calculate the descriptive statistics
tidy_emissions %>% 
  filter(year == 1994) %>%
  skim()
Table 1: Data summary
Name Piped data
Number of rows 219
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 219 0
code 12 0.95 3 8 0 207 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1994.00 0.00 1994.00 1994.00 1994.00 1994.00 1994.00 ▁▁▇▁▁
per_capita_co2_emissions 0 1 4.89 6.82 0.02 0.56 2.66 7.26 60.56 ▇▁▁▁▁
  1. 13 observations have a missing code. How are these observations different? - start with ‘tidy_emissions’ then extract rows with year == 2019 and are missing a code
tidy_emissions %>% 
  filter(year == 1994, is.na(code))
# A tibble: 12 x 4
   entity                     code   year per_capita_co2_emissions
   <chr>                      <chr> <dbl>                    <dbl>
 1 Africa                     <NA>   1994                     1.04
 2 Asia                       <NA>   1994                     2.27
 3 Asia (excl. China & India) <NA>   1994                     3.23
 4 EU-27                      <NA>   1994                     8.48
 5 EU-28                      <NA>   1994                     8.66
 6 Europe                     <NA>   1994                     8.87
 7 Europe (excl. EU-27)       <NA>   1994                     9.36
 8 Europe (excl. EU-28)       <NA>   1994                     9.22
 9 North America              <NA>   1994                    14.1 
10 North America (excl. USA)  <NA>   1994                     4.98
11 Oceania                    <NA>   1994                    11.5 
12 South America              <NA>   1994                     2.06

Entities that are not countries do not have country codes

  1. start with tidy_emissions THEN - use ‘filter’ to extract rows with year == 1994 and without missing codes THEN - use ‘select’ to drop the ‘year’ variable THEN - use ‘rename’to change the variable ’entity’ to ‘country’ - assign the output to ‘emissions_2019’
emissions_1994 <- tidy_emissions %>% 
  filter(year == 1994, !is.na(code))  %>% 
  select(-year)  %>% 
  rename(country = entity)
  1. Which 15 countries have the highest ‘per_capita_co2_emissions’? - start with ‘emissions_1994’ THEN - use ‘slice_max’to extract the 15 rows with the ’per_capita_co2_emissions’ - assign output to ‘max_15_emitters’
max_15_emitters <- emissions_1994  %>% 
  slice_max(per_capita_co2_emissions, n = 15)
  1. Which 15 countries have the lowest ‘per_capita_co2_emissions’? - start with ‘emissions_2019’ THEN - use ‘slice_min’to extract the 15 rows with the lowest values - assign output to ’min_15_emitters’
min_15_emitters <-  emissions_1994  %>% 
  slice_min(per_capita_co2_emissions, n = 15)
  1. Use ‘bind_rows’ to bind together the ‘max_15_emitters’ and ‘min_15_emitters’ - assign output to ‘max_min_15’
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
  1. Export ‘max_min_15’ to 3 file formats
max_min_15 %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab-separated values
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") # pipe separated
  1. Read the 3 file formats into R
max_min_15_csv <- read.csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab-separated values
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe-separated values
  1. Use ‘setdiff’ to check for any differences among ‘max_min_15.csv’, ‘max_min_15.tsv’, and ‘max_min_15.psv’
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
#   per_capita_co2_emissions <dbl>

Are there any differences? Nope! There are no differences.

  1. Reorder ‘country’ in ‘max_min_15’ for plotting and assign to max_min_15_plot_data
max_min_15_plot_data <- max_min_15 %>% 
  mutate(country = reorder(country, per_capita_co2_emissions))
  1. Plot ‘max_min_15_plot_data’
ggplot(data = max_min_15_plot_data,
       mapping = aes(x= per_capita_co2_emissions, y= country)) +
  geom_col() +
  labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
       subtitle = "for 1994",
       x = NULL,
       y = NULL)

  1. Save the plot directory with this post
ggsave(filename = "preview.png", 
       path = here("_posts", "2021-02-26-reading-and-writing-data"))
  1. Add preview.png to yaml at the top of this file
preview: preview.png