Data visualisation part 1. Code for Quiz 7
ggplot(faithful) +
geom_point(aes(x = eruptions, y = waiting,
colour = waiting > 58))
ggplot(faithful) +
geom_point(aes(x = eruptions, y = waiting),
colour = "darkorange")
ggplot(faithful) +
geom_histogram(aes(x = waiting))
ggplot(faithful) +
geom_point(aes(x = eruptions, y = waiting),
shape = "cross", size = 4, alpha =0.3)
ggplot(faithful) +
geom_histogram(aes(x = eruptions, fill = eruptions > 3.2 ))
ggplot(mpg) +
geom_bar(aes(x = manufacturer))
mpg_counted <- mpg %>%
count(manufacturer, name = 'count')
ggplot(mpg_counted) +
geom_bar(aes(x = manufacturer, y = count), stat = 'identity')
ggplot(mpg) +
geom_bar(aes(x = manufacturer, y = after_stat(100 * count / sum(count))))
ggplot(mpg) +
geom_jitter(aes(x = class, y = hwy), width = 0.2) +
stat_summary(aes(x = class, y = hwy), geom = "point",
fun = "median", color = "orange",
shape = "square", size = 9 )
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-03-29-exploratory-analysis"))