Using computer simulation. Based on examples from the infer package. Code for Quiz 13
Load the R packages we will use.
set.seed(123)
‘hr_2_tidy.csv’ is the name of your data subset
Read it into and assign to hr
Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv",
col_types = "fddfff")
use skim to summarize the data in hr
skim(hr)
Name | hr |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 4 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
gender | 0 | 1 | FALSE | 2 | mal: 256, fem: 244 |
evaluation | 0 | 1 | FALSE | 4 | bad: 154, fai: 142, goo: 108, ver: 96 |
salary | 0 | 1 | FALSE | 6 | lev: 95, lev: 94, lev: 87, lev: 85 |
status | 0 | 1 | FALSE | 3 | fir: 194, pro: 179, ok: 127 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
age | 0 | 1 | 39.86 | 11.55 | 20.3 | 29.60 | 40.2 | 50.1 | 59.9 | ▇▇▇▇▇ |
hours | 0 | 1 | 49.39 | 13.15 | 35.0 | 37.48 | 45.6 | 58.9 | 79.9 | ▇▃▂▂▂ |
The mean hours worked per week is: 49.4
Q: IS the mean number of hours worked per week 48/
specify that hours is the variable of interest
hr %>%
specify(response = hours)
Response: hours (numeric)
# A tibble: 500 x 1
hours
<dbl>
1 78.1
2 35.1
3 36.9
4 38.5
5 36.1
6 78.1
7 76
8 35.6
9 35.6
10 56.8
# ... with 490 more rows
hypothesize that the average hours worked is 48
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
hours
<dbl>
1 78.1
2 35.1
3 36.9
4 38.5
5 36.1
6 78.1
7 76
8 35.6
9 35.6
10 56.8
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups: replicate [1,000]
replicate hours
<int> <dbl>
1 1 39.7
2 1 44.3
3 1 46.8
4 1 33.7
5 1 39.6
6 1 39.5
7 1 40.5
8 1 55.8
9 1 72.6
10 1 35.7
# ... with 499,990 more rows
The output has 500,000 rows
calculate the distribution of statistics from the generated data - Assign the output null_t_distribution - Display null_t_distribution
null_t_distribution <- hr %>%
specify(response = age) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "t")
null_t_distribution
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 0.144
2 2 -1.72
3 3 0.404
4 4 -1.11
5 5 0.00894
6 6 1.46
7 7 -0.905
8 8 -0.663
9 9 0.291
10 10 3.09
# ... with 990 more rows
null_t_distribution has 1000 t-stats
visualize the simulated null distribution
visualize(null_t_distribution)
calculate the statistic from your observed data - Assign the output observed_t_statistic - Display observed_t_statistic
observed_t_statistic <- hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
calculate(stat = "t")
observed_t_statistic
# A tibble: 1 x 1
stat
<dbl>
1 2.37
get_p_value from the simulated null distribution and the observed statistic
null_t_distribution %>%
get_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
# A tibble: 1 x 1
p_value
<dbl>
1 0.014
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
Is the p-value < 0.05? yes
Does your analysis support the null hypothesis that the true mean number of hours worked was 48? no
hr_2 <- read_csv("https://estanny.com/static/week13/data/hr_3_tidy.csv",
col_types = "fddfff")
Q: Is the average number of hours worked the same for both genders
use skim to summarize the data in hr_2 by gender
hr_2 %>%
group_by(gender) %>%
skim()
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | gender |
Variable type: factor
skim_variable | gender | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
evaluation | male | 0 | 1 | FALSE | 4 | bad: 72, fai: 67, goo: 61, ver: 47 |
evaluation | female | 0 | 1 | FALSE | 4 | bad: 76, fai: 71, goo: 61, ver: 45 |
salary | male | 0 | 1 | FALSE | 6 | lev: 47, lev: 43, lev: 43, lev: 42 |
salary | female | 0 | 1 | FALSE | 6 | lev: 51, lev: 46, lev: 45, lev: 43 |
status | male | 0 | 1 | FALSE | 3 | fir: 98, pro: 81, ok: 68 |
status | female | 0 | 1 | FALSE | 3 | fir: 98, pro: 91, ok: 64 |
Variable type: numeric
skim_variable | gender | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | male | 0 | 1 | 38.23 | 10.86 | 20 | 28.9 | 37.9 | 47.05 | 59.9 | ▇▇▇▇▅ |
age | female | 0 | 1 | 40.56 | 11.67 | 20 | 31.0 | 40.3 | 50.50 | 59.8 | ▆▆▇▆▇ |
hours | male | 0 | 1 | 49.55 | 13.11 | 35 | 38.4 | 45.4 | 57.65 | 79.9 | ▇▃▂▂▂ |
hours | female | 0 | 1 | 49.80 | 13.38 | 35 | 38.2 | 45.6 | 59.40 | 79.8 | ▇▂▃▂▂ |
Use geom_boxplot to plot distributions of hours worked by gender
hr_2 %>%
ggplot(aes(x = gender, y = hours)) +
geom_boxplot()
specify the variables of interest are hours and gender
hr_2 %>%
specify(response = hours, explanatory = gender)
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 49.6 male
2 39.2 female
3 63.2 female
4 42.2 male
5 54.7 male
6 54.3 female
7 37.3 female
8 45.6 female
9 35.1 female
10 53 male
# ... with 490 more rows
hypothesize that the number of hours worked and gender are independent
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 49.6 male
2 39.2 female
3 63.2 female
4 42.2 male
5 54.7 male
6 54.3 female
7 37.3 female
8 45.6 female
9 35.1 female
10 53 male
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours gender replicate
<dbl> <fct> <int>
1 55.7 male 1
2 35.5 female 1
3 35.1 female 1
4 44.2 male 1
5 52.8 male 1
6 46 female 1
7 41.2 female 1
8 52.9 female 1
9 35.6 female 1
10 35 male 1
# ... with 499,990 more rows
The output has 500,000 rows
calculate the distribution of statistics from the generated data - Assign the output null_distribution_2_sample_permute - Display null_distribution_2_sample_permute
null_distribution_2_sample_permute <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "t", order = c("female", "male"))
null_distribution_2_sample_permute
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 -1.81
2 2 -1.29
3 3 0.0525
4 4 -0.793
5 5 0.826
6 6 0.429
7 7 0.0843
8 8 -0.264
9 9 2.42
10 10 0.603
# ... with 990 more rows
null_t_distribution has 1000 t-stats
visualize the simulated null distribution
visualize(null_distribution_2_sample_permute)
calculate the statistic from your observed data - Assign the output observed_t_statistic - Display observed_t_statistic
observed_t_2_sample_stat <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
calculate(stat = "t", order = c("female", "male"))
observed_t_2_sample_stat
# A tibble: 1 x 1
stat
<dbl>
1 0.208
get_p_value from the simulated null distribution and the observed statistic
null_t_distribution %>%
get_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
# A tibble: 1 x 1
p_value
<dbl>
1 0.878
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
Is the p-value < 0.05? no
Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? yes
hr_1_tidy.csv is the name of your data subset - Read it into and assign to hr_anova - Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv",
col_types = "fddfff")
use skim to summarize the data in hr_anova by status
hr_anova %>%
group_by(status) %>%
skim()
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | status |
Variable type: factor
skim_variable | status | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
gender | promoted | 0 | 1 | FALSE | 2 | mal: 90, fem: 89 |
gender | fired | 0 | 1 | FALSE | 2 | fem: 101, mal: 93 |
gender | ok | 0 | 1 | FALSE | 2 | mal: 73, fem: 54 |
evaluation | promoted | 0 | 1 | FALSE | 4 | goo: 70, ver: 62, fai: 24, bad: 23 |
evaluation | fired | 0 | 1 | FALSE | 4 | bad: 78, fai: 72, goo: 25, ver: 19 |
evaluation | ok | 0 | 1 | FALSE | 4 | bad: 53, fai: 46, ver: 15, goo: 13 |
salary | promoted | 0 | 1 | FALSE | 6 | lev: 42, lev: 42, lev: 39, lev: 34 |
salary | fired | 0 | 1 | FALSE | 6 | lev: 54, lev: 44, lev: 34, lev: 24 |
salary | ok | 0 | 1 | FALSE | 6 | lev: 32, lev: 31, lev: 26, lev: 19 |
Variable type: numeric
skim_variable | status | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | promoted | 0 | 1 | 40.63 | 11.25 | 20.4 | 30.75 | 41.10 | 50.25 | 59.9 | ▆▇▇▇▇ |
age | fired | 0 | 1 | 40.03 | 11.53 | 20.3 | 29.45 | 40.40 | 50.08 | 59.9 | ▇▅▇▆▆ |
age | ok | 0 | 1 | 38.50 | 11.98 | 20.3 | 28.15 | 38.70 | 49.45 | 59.9 | ▇▆▅▅▆ |
hours | promoted | 0 | 1 | 59.21 | 12.66 | 35.0 | 49.75 | 58.90 | 70.65 | 79.9 | ▅▆▇▇▇ |
hours | fired | 0 | 1 | 41.67 | 8.37 | 35.0 | 36.10 | 38.45 | 43.40 | 77.7 | ▇▂▁▁▁ |
hours | ok | 0 | 1 | 47.35 | 10.86 | 35.0 | 37.10 | 45.70 | 54.50 | 78.9 | ▇▅▃▂▁ |
Use geom_boxplot to plot distributions of hours worked by status
hr_anova %>%
ggplot(aes(x = status, y = hours)) +
geom_boxplot()
specify the variables of interest are hours and status
hr_anova %>%
specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 78.1 promoted
2 35.1 fired
3 36.9 fired
4 38.5 fired
5 36.1 fired
6 78.1 promoted
7 76 promoted
8 35.6 fired
9 35.6 ok
10 56.8 promoted
# ... with 490 more rows
hypothesize that the number of hours worked and status are independent
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 78.1 promoted
2 35.1 fired
3 36.9 fired
4 38.5 fired
5 36.1 fired
6 78.1 promoted
7 76 promoted
8 35.6 fired
9 35.6 ok
10 56.8 promoted
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours status replicate
<dbl> <fct> <int>
1 41.9 promoted 1
2 36.7 fired 1
3 35 fired 1
4 58.9 fired 1
5 36.1 fired 1
6 39.4 promoted 1
7 54.3 promoted 1
8 59.2 fired 1
9 40.2 ok 1
10 35.3 promoted 1
# ... with 499,990 more rows
The output has 500,000 rows
calculate the distribution of statistics from the generated data - Assign the output null_distribution_anova - Display null_distribution_anova
null_distribution_anova <- hr_anova %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "F")
null_distribution_anova
# A tibble: 1,000 x 2
replicate stat
* <int> <dbl>
1 1 0.309
2 2 0.854
3 3 0.00000101
4 4 0.288
5 5 4.26
6 6 1.80
7 7 0.381
8 8 1.40
9 9 1.39
10 10 0.398
# ... with 990 more rows
null_distribution_anova has 1000 F-stats
visualize the simulated null distribution
visualize(null_distribution_anova)
calculate the statistic from your observed data - Assign the output observed_f_sample_stat - Display observed_f_sample_stat
observed_f_sample_stat <- hr_anova %>%
specify(response = hours, explanatory = status) %>%
calculate(stat = "F")
observed_f_sample_stat
# A tibble: 1 x 1
stat
<dbl>
1 128.
get_p_value from the simulated null distribution and the observed statistic
null_distribution_anova %>%
get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
p_value
<dbl>
1 0
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-05-05-hypothesis-testing"))
Save the previous plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-05-05-hypothesis-testing"))
If the p-value < 0.05? yes
Does your analysis support the null hypothesis that the true means? no.